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Methodological Appendix

This appendix provides additional information about the five analytic methods used to generate

the empirical results in this paper. While our key finding is that stability is more common than

change in the Health and Retirement survey data, the data also record substantial item missingness,

wave non-response, individual dropout, and mortality. The various forms of missing data a↵ect

the sample composition over time, and introduce substantial uncertainty about the congruence

between the health changes experienced by respondents, what is documented in the survey data,

and the methods used to model longitudinal health patterns. We begin by describing patterns of

missing data in the HRS before moving to more detailed considerations of each method. For the

latent growth curve, latent class growth analysis, and multistate model, we provide key model fit

statistics. We also discuss supplemental analyses for the various methods, including robustness and

sensitivity checks. Finally, we describe the implications of missing data for inferences from each of

the five methods.

Prevalence of Missing Data in the Health and Retirement Study

While no health change is the most common outcome for HRS respondents who remained in the

study, Table A1 shows that 52% of the sample is lost to attrition or mortality before the end of

the follow up period. Those who dropped out or died were disproportionately likely to be dropped

from the LGC, LCGA, and descriptive analyses. 23% of respondents who dropped out and 18%

of respondents who died are excluded from these analyses because they contribute one or fewer

reports of functional limitations.1 Respondents who died and contributed just one round of data

had substantially more functional limitations when observed compared to cases who contributed

1Respondents would be dropped if they remained in sample but contributed only to the last survey round.
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to multiple survey rounds before leaving the sample. Both prior studies (Jackson et al., 2019;

Zajacova and Burgard, 2013) and our own supplementary analyses (available upon request) show

that members of the HRS cohort who contribute multiple waves of data di↵er considerably from

those who are excluded in analyses of longitudinal change.

As we discuss below, within the gradualist analytic framework there are advanced techniques

to account for missing data in longitudinal analyses of health, including the use of full-information

maximum likelihood and inverse probability weighting. However, as we explain below, while these

methods enable a more complete use of available data, they do not correct for the non-random

selection processes at play. Subject dropout and mortality are very common events that alter the

sample composition and therefore influence our inferences about the sample’s health status and

health changes throughout the longitudinal study follow-up period.2 Together, our findings suggest

that the analytic sample is selected to be healthier than the original HRS sample.

Growth Curve Modeling

Formal Specification. The latent growth curve results shown in the main text were estimated

in MPlus 7.11 based on the following model:

This univariate latent growth curve is shaped by functional limitations measured at 11 time

points (Y1, Y2,...,Y11) and described parametrically by an intercept (I) and a linear slope (S).

The model can also be summarized by the following equation:

Yit = ⌘0i + ⌘1ixit + "i (1)

2Due to limitations of the data, we cannot precisely determine the timing of subject dropout and mortality. Some
respondents may have dropped out of the sample due to death, while in other cases death may have occurred after a
respondent left the sample
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where Yit is the count of functional limitations for individual i at time t; ⌘0i is the intercept of the

functional limitation trajectory for individual i; ⌘1i is the rate of change (slope) in the number of

functional limitations for individual i across di↵erent time periods (xt); and "it represents random

error in functional limitations.

The person-specific growth curve slope and intercept parameters are allowed to vary randomly

and are estimated as dependent variables by the following person-level models:

⌘0i = ↵00 + ↵01wi + ⇣0i (2)

⌘1i = ↵10 + ↵11wi + ⇣1i (3)

where the ↵ parameters represent the slope and intercept of each growth parameter and w are time

invariant covariates. ⇣0i and ⇣1i are random e↵ects with mean of zero.

Fit Statistics. Table A2 shows the fit statistics for latent growth curve models with linear and

quadratic slopes. The lower AIC, BIC, and RMSEA statistics, along with the higher CFI and TLI

statistics are consistent in recommending the latent growth curve model with a quadratic slope

shown in Table 1 and Figure 2 in the main text as the best fitting model.

Robustness and Sensitivity Checks. Although not shown here, it is possible within the latent

growth curve model to estimate individual trajectories which may deviate from the average popu-

lation trajectory. One could extend this further by interacting individual characteristics with the

intercept and slope terms, to identify those who report no health change or show evidence of a re-

covery. Nonetheless, due to the parametric constraints in model fitting, such individual trajectories

would still appear smooth and represent change as gradual. We do not present this analysis in the

main text or in this appendix because we believe the resulting estimates are likely biased due to

the presence of non-random missing data.

The Impact of Missing Data on Model Inferences. Our paper adopts the standard approach

to estimating growth curve models, full information maximum likelihood (FIML). The oft-cited

advantage of FIML estimation is that it allows respondents to contribute information until the

time of dropout. However, FIML assumes that data is missing at random after conditioning on
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observed factors. In longitudinal studies of the health of older adults, however, we often have strong

evidence suggesting that missingness is not random. Rather, health shocks and health declines in

the two years between survey rounds may directly influence the likelihood of respondents having

missing data or being lost to follow up.

Although we cannot conclusively demonstrate here that data is not missing at random, prior

research (Zajacova and Burgard, 2013; Jackson et al., 2019) suggests that the HRS has significant

non-randomly missing data. Because individuals who dropout likely have poorer health outcomes

including the accumulation of more functional limitations, latent growth curve trajectories likely

underestimate the burden of functional limitations in the population and the true shape of the

average trajectory is not known.

Latent Class Growth Analysis

Formal Specification The latent class growth class growth models (LCGA) shown in the main

text were estimated in MPlus 7.11 based on the model depicted here:

This LCGA model is similar to the latent growth curve model specified above but includes the

addition of a categorical variable (c) which indicates latent class:

Y c
it = ⌘c0 + ⌘c1xit + "it (4)

Y c
it represents the functional status of individual i at time t given membership in latent class c. The

⌘ parameters represent the coe�cients associated with the intercept and rate of change in functional

status for individuals in class c. "it is a disturbance term assumed to be normally distributed with

mean zero and constant variance. As in the latent growth curve model described above, each latent
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class has a class-specific intercept and slope predicted using equations equivalent to (2) and (3)

above.

Fit Statistics. Table A3 shows the sample adjusted BIC for fitted LCGA models with varying

numbers of classes and slope types. The best-fitting model selected and displayed in the main

text is the four class quadratic, which has the smallest sample adjusted BIC and a significant

Lo-Mendell-Rubin likelihood ratio test. The sample adjusted BIC is not shown for the five class

quadratic and six class models because these models did not converge. The sample adjusted AIC

also suggested the four class quadratic model provides the best fit to the data (results available

upon request). Although these statistics generally agree in recommending the four class quadratic

model as the preferred fit, prior studies caution against relying solely on fit statistics in selecting

models (Tein et al., 2013; Tofighi and Enders, 2008).

Robustness and Sensitivity Checks. Because of the uncertainty in the preferred number

of latent classes, we examined the trajectories for all models that achieved convergence (results

available upon request). Across models, trajectories are smooth and there is one latent class that

displays a slow, steady progression of limitations and is estimated to contain a majority of the

sample (see Class A of Figure 3 in the main text). Additionally, at least one of the other fitted

classes has a high level of impairment that remains fairly constant over time, similar to Class C.

However, we caution against the tendency to reify any latent class due to concerns about non-

randomly missing data.

The Impact of Missing Data on Model Inferences. In sensitivity analyses, we find that as

in the case of the latent growth curves, LCGAs modeled with a FIML approach underestimate

functional limitations for the sub-sample that dies over the course of follow up. Furthermore, the

exact shape of specified latent classes is sensitive to assumptions made about cases with missing data

(results available upon request). The likely consequences of the violation of the FIML assumption

of random missingness are (1) an underestimation of the prevalence and progression of functional

limitations and (2) substantial uncertainty regarding the shape of estimated latent classes (Jackson

et al., 2019).

Furthermore, there is considerable uncertainly in the assignment of individuals into latent

classes. As we show via the descriptive, multistate, and sequence analyses, the LCGA does not
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seem to accurately represent observed individual trajectories. Moreover, for individuals who drop

out of the sample, there can be substantial class misclassification (see also Warren et al. (2015)).

Descriptive Analysis

Supplemental Analysis. To supplement the findings reported in the main text, we calculated how

many individuals (of those who remain in the sample over time) experience increasing functional

limitations across successive survey rounds. The key findings in Table A4 is that no individual

experiences the successive, gradual progression of functional limitations implied by the LGC and

LCGA analyses. All descriptive analyses were conducted using R.

The Impact of Missing Data on Model Inferences. Notably, descriptive analyses are also

influenced by the presence of missing data. In the main analysis, individuals are included in Table

2 only if they contribute health information to at least two survey rounds. This reduces the repre-

sentativeness of the sample and deflates the proportion with constant health over time, rendering

our estimates of stability conservative. However, the extent of item-specific and wave missingness

is not captured in the table. We might expect that individuals who contribute information to more

rounds of data would give us more opportunities to observe a health change while cases with miss-

ing information may be less likely to have a health change captured in the survey data, whether or

not they actually experienced a health change.

Multistate Analysis

Formal Specification

As shown in the main text, the multi-state model we calculated using Stata contains 5 mutually

exclusive and exhaustive states:
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The corresponding transition matrix is:

Q =

0

BBBBBBBBBB@

q11 q12 q13 q14 0

q21 q22 q23 q24 0

q31 q32 q33 q34 0

q41 q42 q43 q44 0

0 0 0 0 0

1

CCCCCCCCCCA

(5)

Transitions are governed by a Markov process with continuous time where state occupancy is

observed a finite number of times. The likelihood function for this model is calculated from the

transition probability matrix of:

P (t) = Exp(tQ) (6)

and a likelihood function that is the product of transition probabilities between states S(tj) at

successive times (tj):

L(Q) =
Y

j

PS(tj),S(tj+1)(tj+1 � tj) (7)

Fit Statistics. A comparison of fit statistics for alternative specifications of the multistate model

is shown in Table A5. Results confirm that the model shown in the main text has the lowest

AIC, indicating the best fit to the data. Models with more than three piecewise time breaks did

not converge. Table A6 shows that the percentages of people in each state as predicted by the

best-fitting multistate model track well with those observed in each state at each time period.

Robustness and Sensitivity Checks. A key limitation of the multistate approach is that it

collapses functional limitations from 13 to 3 categories. In the main analysis, the three states are

(1) 0 to 1 limitations, (2) 2 to 5 limitations, and (3) 6 to 12 limitations. Because most respondents

have only a few limitations, this model will necessarily miss health changes that occur within the

three states. To address this concern, we conducted sensitivity analyses that varied the cutpoints for

the health states, and found that results were qualitatively similar to those shown in the main text,

supporting the robustness of the conclusions. Results from one particularly interesting sensitivity

check are shown in Table A7. This model defines the three health states as having 0 limitations

(state 1), 1 to 4 limitations (state 2), and 5 to 12 limitations (state 3). By keeping individuals with
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no health limitations in a separate state, we are able to e↵ectively estimate the transition from

having no to any limitation. Again, the finding is that remaining in the same state is the most

common outcome between any two survey rounds.

The Impact of Missing Data on Model Inferences. Unlike the LGC, LCGA, and descriptive

analyses, the multistate model we specified explicitly defines temporary missingness as a state. It

shows the probability of transitioning between the observed health states and the temporary missing

state as well as the probability of transitioning into a permanent dropout or mortality state. Table

3 in the main text shows that the probability of transitioning into a temporary missing state is

similar across observed health states. This finding suggests that there is not strong health selection

driving item or temporary missingness. However, people with more functional limitations are more

likely to dropout of the sample or die in the course of follow up. For example, at survey round 2,

people with one or no limitations have a 4% chance of leaving the sample at the next survey wave

while people with 5-12 limitations have a 10% chance of leaving the sample. These findings suggest

that our multistate analysis – like its LGC and LCGA counterparts – may disproportionately under

represent individuals with severe health limitations.

Sequence Analysis

Sequence analyses were conducted in Stata using SQ-Ados.

The Impact of Missing Data on Model Inferences. Like the multistate model, the

sequence analysis explicitly models missingness as a possible outcome across survey rounds. The

most striking finding from Figure 4 in the main text is that the second most common trajectory,

characterizing 219 individuals in the sample, is dropout before survey round 2, and the third most

common trajectory, characterizing 171 persons, is death before survey round 2. Most of the most

common sequences include some periods when an individual had missing data or had dropped out

of the sample. Findings demonstrate that the prevailing experience of individuals is one of no

change or consistently missing measures of functional limitation.
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Incorporating Uncertainty across Model Specifications

To this point, this paper has been largely silent on the impact of measurement error on inferences

across model specifications. Below, we briefly describe sensitivity analyses that could explicitly

address stochastic error in each model specification.

In latent growth curve models, there is an error term which allows for individual values to vary

around the average estimated trajectory. It is possible to leverage this error term in predictive

models to generate a confidence interval around the fitted average trajectory. In the latent class

growth analyses, an equivalent uncertainty can be quantified for individual predicted values. Since

individuals are also classified into particular latent classes with some error, it is also possible to rerun

the classification model to see how an individual’s predicted latent class varies across model draws

(Nagin, 2005). While both of these exercises may be conducted to characterize the uncertainty in

predictions from latent growth curve and latent class models, the average fitted trajectories will

always emphasize the gradualist parametric assumptions built into these regression models.

Multi-state and sequence analyses are also susceptible to individual classification error and un-

certainty in population estimates. A multi-state model estimates a matrix of transition probabilities

for a population with an observed initial distribution of states and distributions of states observed

at some finite number of follow-up time points. A simulation could extend this model by generating

some number of hypothetical cohorts with an initial distribution of states equal to that observed in

the actual population. The estimated transition matrix can then be applied to each hypothetical

cohort for a given follow-up period, yielding a set of predicted values for each hypothetical cohort at

each observation time. These values can be averaged or examined at the 2.5, 50, or 97.5 percentile

of draws to characterize the expected variation in state occupancy at each follow-up point.

Although not commonly done, uncertainty in the sequence analysis could also be quantified.

One strategy might combine the multi-state models with the sequence analysis: after estimating the

expected state distribution of a set of hypothetical cohorts, it would be possible to run a sequence

analysis on each cohort. Sequences at the 2.5, 50, or 97.5 percentiles of the simulated cohorts can

then be compared to bound the estimates from the observed HRS sample. Because the sequence

analysis depends on the details of repeated survey measures, it may also be influenced by reporting

error, though it is not possible to empirically distinguish this from other sources of stochasticity
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captured by the sensitivity analysis.

The procedures described above represent methods of quantifying the sensitivity of estimates

in the main text to measurement error, but they do not change the underlying assumptions im-

plied by each of the methods described. It is important to note that analyses of population data

cannot separate measurement error due to inaccurate or incomplete reporting from variation due

to pure chance or a set of highly contingent events that cannot be fully documented in quantitative

data. On the aggregate level, these distinctions matter little as inferences are based on average

trajectories, which are well-represented by gradualist models. The many contributions to the messy

heterogeneity observed in individual histories are what the punctuated equilibrium perspective calls

attention to.
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Table A2: Fit Statistics for Latent Growth Curve Models

Model AIC SABIC RMSEA CFI TLI

Linear Latent Growth Curve 311461.707 311525.749 0.073 0.950 0.955

Quadratic Latent Growth Curve 309720.802 309800.855 0.051 0.977 0.978

Table A3: Fit Statistics for LCGA Models

Model Sample Adjusted BIC

2 class linear 308003.334

2 class quadratic 306178.625

3 class linear 306664.58

3 class quadratic 304585.4

4 class linear 305882.043

4 class quadratic 303683.76

5 class linear 305273.165

5 class quadratic –

6 class linear –

6 class quadratic –
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Table A4: Prevalence of Gradually Increasing Functional Limitations

Successive Increase Through Starting Sample Observed at Round 2

N=8,825

Round 3 2,487

Round 4 504

Round 5 77

Round 6 12

Round 7 5

Round 8 1

Round 9 0

Table A5: Fit Statistics for Alternative Multistate Model Specifications

Model AIC

Transition Probabilities Constrained to be Constant Across Rounds 159407.1

Transition Probabilities Constrained to be Constant Between Rounds 2 to 5, 6 to 12 158736.4

Transition Probabilities Constrained to be Constant Between Rounds 2 to 5, 6 to 8, 9 to 12 158209.4
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Table A7: Alternative Specification for Multistate Models

Rounds 2 to 5

0 Limitations 1 to 4 Limitations 5 to 12 Limitations Missing Dropout/Died

0 Limitations 0.64 0.25 0.03 0.03 0.04

1 to 4 Limitations 0.21 0.60 0.12 0.03 0.05

5 to 12 Limitations 0.04 0.21 0.64 0.03 0.09

Missing 0.19 0.19 0.09 0.52 0.01

Dropout/Died 0.00 0.00 0.00 0.00 1.00

Rounds 6 to 8

0 Limitations 1 to 4 Limitations 5 to 12 Limitations Missing Dropout/Died

0 Limitations 0.61 0.29 0.03 0.03 0.04

1 to 4 Limitations 0.15 0.65 0.13 0.02 0.04

5 to 12 Limitations 0.03 0.21 0.64 0.02 0.10

Missing 0.16 0.22 0.12 0.49 0.02

Dropout/Died 0.00 0.00 0.00 0.00 1.00

Rounds 9 to 12

0 Limitations 1 to 4 Limitations 5 to 12 Limitations Missing Dropout/Died

0 Limitations 0.58 0.30 0.04 0.01 0.06

1 to 4 Limitations 0.13 0.61 0.17 0.01 0.08

5 to 12 Limitations 0.02 0.17 0.64 0.01 0.17

Missing 0.18 0.29 0.23 0.25 0.05

Dropout/Died 0.00 0.00 0.00 0.00 1.00
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